Is intelligence a function of a generalized ability g factor that underlies most intellectual and me

The "dark triad" of three personality traits: Sometimes called "dark personality. Psychopathy is a psychological condition in which the individual shows a profound lack of empathy for the feelings of others, a willingness to engage in immoral and antisocial behavior for short-term gains, and extreme egocentricity. Psychopaths do not have the fear response experienced by most of us to the potential negative consequences of criminal or risky behavior and are relatively insensitive to punishment.

Is intelligence a function of a generalized ability g factor that underlies most intellectual and me

This is primarily a list of Greatest Mathematicians of the Past, but I use birth as an arbitrary cutoff, and two of the "Top " are still alive now. Click here for a longer List of including many more 20th-century mathematicians. Click for a discussion of certain omissions. Please send me e-mail if you believe there's a major flaw in my rankings or an error in any of the biographies.

Obviously the relative ranks of, say Fibonacci and Ramanujan, will never satisfy everyone since the reasons for their "greatness" are different. I'm sure I've overlooked great mathematicians who obviously belong on this list.

Please e-mail and tell me! Following are the top mathematicians in chronological birth-year order. By the way, the ranking assigned to a mathematician will appear if you place the cursor atop the name at the top of his mini-bio.

Earliest mathematicians Little is known of the earliest mathematics, but the famous Ishango Bone from Early Stone-Age Africa has tally marks suggesting arithmetic.

The markings include six prime numbers 5, 7, 11, 13, 17, 19 in order, though this is probably coincidence.

B. Fraudulent Suppression of the Decline in Accidental Child Gun Death. To help promote their gun control agenda, health advocate sages have long harped on the emotionally charged issue of child death by gun accident. Multiple reasons dictate their failure to acknowledge the steep decline in such tragedies. Story. Doing Data Science Exercises Without Data Cleaning and Coding. So as a data scientists/data journalist/information designer, who is about to teach university courses, I asked is it possible to teach and introductory level class that does not require first learning a lot about data cleaning and coding? Law and Neuroscience Bibliography Browse and search the bibliography online (see search box below) Click here to learn more about the Law and Neuroscience Bibliography.. Sign up here for email notifications on new additions to this bibliography.. Graph of the Cumulative Total of Law and Neuroscience Publications:

The advanced artifacts of Egypt's Old Kingdom and the Indus-Harrapa civilization imply strong mathematical skill, but the first written evidence of advanced arithmetic dates from Sumeria, where year old clay tablets show multiplication and division problems; the first abacus may be about this old.

By years ago, Mesopotamian tablets show tables of squares, cubes, reciprocals, and even logarithms and trig functions, using a primitive place-value system in base 60, not Babylonians were familiar with the Pythagorean Theorem, solutions to quadratic equations, even cubic equations though they didn't have a general solution for theseand eventually even developed methods to estimate terms for compound interest.

The Greeks borrowed from Babylonian mathematics, which was the most advanced of any before the Greeks; but there is no ancient Babylonian mathematician whose name is known. Also at least years ago, the Egyptian scribe Ahmes produced a famous manuscript now called the Rhind Papyrusitself a copy of a late Middle Kingdom text.

It showed simple algebra methods and included a table giving optimal expressions using Egyptian fractions. Today, Egyptian fractions lead to challenging number theory problems with no practical applications, but they may have had practical value for the Egyptians. The Pyramids demonstrate that Egyptians were adept at geometry, though little written evidence survives.

Babylon was much more advanced than Egypt at arithmetic and algebra; this was probably due, at least in part, to their place-value system. But although their base system survives e. The Vedics understood relationships between geometry and arithmetic, developed astronomy, astrology, calendars, and used mathematical forms in some religious rituals.

The earliest mathematician to whom definite teachings can be ascribed was Lagadha, who apparently lived about BC and used geometry and elementary trigonometry for his astronomy. Apastambha did work summarized below; other early Vedic mathematicians solved quadratic and simultaneous equations.

Other early cultures also developed some mathematics. The ancient Mayans apparently had a place-value system with zero before the Hindus did; Aztec architecture implies practical geometry skills.

Ancient China certainly developed mathematics, in fact the first known proof of the Pythagorean Theorem is found in a Chinese book Zhoubi Suanjing which might have been written about BC. Thales may have invented the notion of compass-and-straightedge construction.

Several fundamental theorems about triangles are attributed to Thales, including the law of similar triangles which Thales used famously to calculate the height of the Great Pyramid and "Thales' Theorem" itself: The other "theorems" were probably more like well-known axioms, but Thales proved Thales' Theorem using two of his other theorems; it is said that Thales then sacrificed an ox to celebrate what might have been the first mathematical proof in Greece.

Thales was also an astronomer; he invented the day calendar, introduced the use of Ursa Minor for finding North, invented the gnomonic map projection the first of many methods known today to map part of the surface of a sphere to a plane, and is the first person believed to have correctly predicted a solar eclipse.

His theories of physics would seem quaint today, but he seems to have been the first to describe magnetism and static electricity. Aristotle said, "To Thales the primary question was not what do we know, but how do we know it.

Is intelligence a function of a generalized ability g factor that underlies most intellectual and me

It is said he once leased all available olive presses after predicting a good olive season; he did this not for the wealth itself, but as a demonstration of the use of intelligence in business.

Thales' writings have not survived and are known only second-hand. Since his famous theorems of geometry were probably already known in ancient Babylon, his importance derives from imparting the notions of mathematical proof and the scientific method to ancient Greeks.

Thales' student and successor was Anaximander, who is often called the "First Scientist" instead of Thales: Anaximander is famous for astronomy, cartography and sundials, and also enunciated a theory of evolution, that land species somehow developed from primordial fish!

Anaximander's most famous student, in turn, was Pythagoras. The methods of Thales and Pythagoras led to the schools of Plato and Euclid, an intellectual blossoming unequaled until Europe's Renaissance. For this reason Thales may belong on this list for his historical importance despite his relative lack of mathematical achievements.I for one think this is a great change, and a brilliant post.

Absolutely, less time delightedly exploring still more abstruse mistake-theory-legible problems (although these are fun and the theory that total unity is possible feels good) in favor of more time spent on projects such as, “which candidates are really fighting for the people vs.

just astroturfed shills” hear hear! Students raised in poverty are especially subject to stressors that undermine school behavior and performance. For example, girls exposed to abuse tend to experience mood swings in school, while boys experience impairments in curiosity, learning, and memory (Zuena et al., ).

According to Sternberg, a complete explanation of intelligence entails the interaction of these three subtheories. The componential subtheory specifies the potential set of mental processes that underlies behavior (i.e., how the behavior is generated) while the contextual subtheory relates intelligence to the external world in terms of what behaviors are intelligent and where.

N-back is a kind of mental training intended to expand your working memory (WM), and hopefully your intelligence (IQ 1).. The theory originally went that novel 2 cognitive processes tend to overlap and seem to go through one central it happens, WM predicts and correlates with IQ 3 and may use the same neural networks 4, suggesting that WM might be IQ 5.

See also the pages. The poetry of Seamus Heaney: flawed success Seamus Heaney: ethical depth? His responses to the British army during the Troubles in Northern Ireland, bullfighting, the Colosseum, 'pests,' 9/11, IRA punishment, the starving or hungry, the hunger strikers in Northern Ireland.

This is a guest post by Jason Stellman. Jason was born and raised in Orange County, CA, and served as a missionary with Calvary Chapel of Costa Mesa in Uganda (’’92) and in Hungary (’’00).

The Digital Cast of Being (Michael Eldred)